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Abstract
For the 3-component dispersionless Boussinesq-type system, we construct two
compatible nontrivial finite deformations for the Lie algebra structure in the
symmetry algebra.

PACS numbers: 02.30.Ik, 11.30.Ly, 11.10.Ef
Mathematics Subject Classification: 37K10, 37K30, 17B62

In this paper, we construct a two-parametric family of nontrivial finite deformations for the Lie
bracket in the algebra of symmetries for the 3-component dispersionless Boussinesq system
of hydrodynamic type [1–3]

E = {ut = wwx + vx, vt = −uwx − 3uxw,wt = ux}. (1)

This system is obtained by reduction from the dispersionless Kadomtsev–Petviashvili (dKP)
equation; its integrability by the generalized hodograph transformation is discussed in [1].

First, we note that the image of a previously known [3] self-adjoint Noether operator
A0: cosym E → sym E for (1) is closed w.r.t. the commutation. Hence, this operator and the
bi-Hamiltonian pair (Â1, Â2) for (1), see [2], transfer the standard bracket [, ] in sym E to the
Lie algebra structures on their domain. We prove that the three new brackets are compatible.

The Noether operator A0 is invertible on an open dense subset of E . This yields two
recursion operators Ri = Âi ◦ A−1

0 : sym E → sym E . The images of Ri are again closed
w.r.t. the commutation, and this property is retained by their arbitrary linear combinations.
Using the ‘chain rule’ formula (8) for the bi-differential brackets on domains of the operators
Âi and Ri , we calculate the second Lie algebra structures [, ]Ri

on sym E .
All notions and constructions are standard [4, 5]. We follow the notation of [3, 5].

We stress that the concept of linear compatible differential operators with involutive images,
which we present here, can be applied to the study of other integrable systems with or without
dispersion (e.g., see [6]).
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Remark 1. Let M be a smooth finite-dimensional orientable real manifold. The construction
of trivial infinitesimal deformations

[x, y]N := d

dλ

∣∣∣∣
λ=0

e−λN[eλN(x), eλN(y)] = [Nx, y] + [x, Ny] − N([x, y])

of the standard Lie algebra structure [, ] on the tangent bundle, x, y ∈ �(T M), is well
developed in the literature [7]: if the Nijenhuis torsion [Nx, Ny] − N([x, y]N) for an
endomorphism N: �(T M) → �(T M) vanishes, then the Lie brackets [, ]Nk obtained by
iterations Nk of the Nijenhuis recursion N are compatible (their linear combinations are Lie
algebra structures as well). Suppose further that M is equipped with a Poisson bi-vector
P ∈ �(

∧2
(T M)). If the Nijenhuis and Poisson structures (N,P) satisfy two compatibility

conditions [7], then they generate an infinite hierarchy of compatible Poisson structures
Nk ◦ P, k � 0. The concept of Poisson–Nijenhuis structures admits a straightforward
generalization [8] for the infinite jet bundles over smooth manifolds and for infinite-
dimensional integrable systems of PDE; see [4, 9, 10] for details.

In contrast, in this paper we construct two nontrivial finite deformations [, ]Ri
of the

standard Lie bracket [, ] on the symmetry algebra sym E for (1). We shall use two local
recursion operators Ri, i = 1, 2, whose images are closed w.r.t. the commutation. Thence, we
obtain the new bracket [, ]Ri

through

[Riϕ1, Riϕ2] = Ri

(
[ϕ1, ϕ2]Ri

)
for any ϕ1, ϕ2 ∈ sym E . (2)

The construction consists of two steps.

1. Involutive distributions of operator-valued fields and the linear compatibility of
operators

First, let a linear operator � in total derivatives be either a recursion sym E → sym E for
an evolutionary system E or a Noether operator cosym E → sym E whose arguments, the
cosymmetries1 ψ , belong to the kernel of the adjoint linearization �∗

E (ψ) = 0 for E = {ut = f};
see [4, 5]. For example, all Hamiltonian operators for E are Noether.

Suppose further that the image of � is closed w.r.t. the commutation in sym E :
[im �, im �] ⊆ im �. The Lie algebra structure [, ]|im A is transferred by � onto the quotient
� = dom �/ ker �:

[�(φ′),�(φ′′)] = �([φ′, φ′′]�), φ′, φ′′ ∈ �.

By the Leibnitz rule, two pairs of summands appear in the bracket of the evolutionary vector
fields ∂�(φ′) and ∂�(φ′′), which are of form ∂ϕ = ∑

|σ|�0 Dσ(ϕ) · ∂/∂uσ,

[�(φ′),�(φ′′)] = �(∂�(φ′)(φ
′′) − ∂�(φ′′)(φ

′)) + (∂�(φ′)(�)(φ′′) − ∂�(φ′′)(�)(φ′)).

In the first summand, we have used the permutability of evolutionary derivations and total
derivatives. The second pair of summands must hit the image of � by the assumption of
commutation closure. Therefore, the bracket [φ′, φ′′]� equals

[φ′, φ′′]� = ∂�(φ′)(φ
′′) − ∂�(φ′′)(φ

′) + {{φ′, φ′′}}�. (3)

1 We label the evolution equations upon u1, . . . , um in the system E with the same variables ui that occur in the
left-hand sides. With such convention, the cosymmetries ψ that originate from the currents η = ρ dx + · · · are equal
to the variational derivatives δρ/δu of the conserved densities ρ. By extending the transformation rule for δρ/δu

under reparametrizations of ui that preserve the evolutionary form of E onto the entire domain of �, we obtain the
transformation law for Noether operators.
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It contains the two standard summands and the skew-symmetric bilinear bracket {{, }}�. Unlike
[, ]�, its component {{, }}� does not generally satisfy the Jacobi identity and it may not be
a cocycle for the Lie algebra (�, [, ]�). For Hamiltonian operators Â, the bracket {{, }}Â is
given by (5); see lemma 1. The decomposition (3) of the bracket [, ]� that calculates the
commutation relations for higher symmetries ϕ = �(φ) of the scalar Liouville equation was
obtained in [11], cf [6].

Example 1. A self-adjoint (hence non-Hamiltonian2) zero-order Noether operator A0 for (1)
was found in [3]:

A0 =
⎛⎝ wwx + vx −3uxw − uwx ux

−3uxw − uwx −3w2wx − 4vxw − uux vx

ux vx wx

⎞⎠ . (4)

We see that its image in sym E is involutive; the components of the arising bracket {{p, q}}A0

with p, q ∈ cosym E are

{{p, q}}uA0
= pw

x qu − puqw
x + 3w

(
puqv

x − pv
xq

u
)

+ 3w
(
pvqu

x − pu
xq

v
)

+ pu
xq

w − pwqu
x + 2wx

(
puqv − pvqu

)
+ u

(
pvqv

x − pv
xq

v
)
,

{{p, q}}vA0
= pu

xq
u − puqu

x + 4w
(
pvqv

x − pv
xq

v
)

+ pv
xq

w − pwqv
x + pw

x qv − pvqw
x ,

{{p, q}}wA0
= u

(
puqv

x − pv
xq

u
)

+ 3w2
(
pvqv

x − pv
xq

v
)

+ 2ux

(
pvqu − puqv

)
+ w

(
pu

xq
u − puqu

x

)
+ u

(
pvqu

x − pu
xq

v
)

+ pw
x qw − pwqw

x .

Lemma 1 ([5, p 130]). The image of any Hamiltonian operator Â = ∥∥∑
|τ |�0 Aij

τ · Dτ

∥∥ is
closed w.r.t. the commutation. The kth component (1 � k � m) of the bracket {{, }}Â on its
domain equals

{{φ′, φ′′}}k
Â

=
∑
|σ|�0

m∑
i=1

(−1)|σ|

⎛⎝Dσ ◦
⎡⎣ ∑

|τ |�0

m∑
j=1

Dτ (φ′
j ) · ∂Aij

τ

∂uk
σ

⎤⎦⎞⎠ (φ′′
i ). (5)

The proof of lemma 1 essentially amounts to an evaluation of the preimage of the
expression ∂A(φ′)(A)(φ′′) − ∂A(φ′′)(A)(φ′) under the mapping A (cf (3) with � = A). This is
achieved via formula (A.1) from theorem 6, which exprimes the fact that a linear skew-adjoint
total differential operator A is Hamiltonian if and only if the Poisson bracket {, }A satisfies the
Jacobi identity or, equivalently, the Schouten bracket [[A,A]] vanishes; see appendix A for
details.

Example 2. The pair (Â1, Â2) of compatible Hamiltonian operators for (1) was obtained in
[2]:

Â1 =
⎛⎝Dx 0 0

0 −4wDx − 2wx Dx

0 Dx 0

⎞⎠ , (6)

Â2 =
⎛⎝(2w2 + 4v)Dx + 2(wwx + vx) −11uwDx − (5uxw + 9uwx) 3uDx + ux

−11uwDx − 6uxw − 2uwx 2hDx + hx 4vDx + vx

3uDx + 2ux 4vDx + 3vx 2wDx + wx

⎞⎠ , (7)

2 In this paper, Hamiltonian operators are indicated with the ‘hat’ sign: Â, Â1 and Â2.
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where we put h = −(
3
2u2 + 8vw + 3w3

)
. The components of the brackets {{, }}Âi

are given by
(5): for any p, q ∈ cosym E they equal, respectively,

{{, }}u
Â1

= {{, }}v
Â1

= 0, {{p, q}}w
Â1

= 2
(
pvqv

x − pv
xq

v
)

and

{{p, q}}u
Â2

= 2
(
pw

x qu − puqw
x

)
+ 6w

(
puqv

x − pv
xq

u
)

+ 5w
(
pvqu

x − pu
xq

v
)

+ pu
xq

w − pwqu
x + 4wx(p

uqv − pvqu) + 3u
(
pvqv

x − pv
xq

v
)
,

{{p, q}}v
Â2

= 2
(
pu

xq
u − puqu

x

)
+ 8w

(
pvqv

x − pv
xq

v
)

+ pv
xq

w − pwqv
x + 3

(
pw

x qv − pvqw
x

)
,

{{p, q}}w
Â2

= 2u
(
puqv

x − pv
xq

u
)

+
(
8v + 9w2

) · (
pvqv

x − pv
xq

v
)

+ 4ux(p
vqu − puqv)

+ 2w
(
pu

xq
u − puqu

x

)
+ 9u

(
pvqu

x − pu
xq

v
)

+ pw
x qw − pwqw

x .

We claim that the Noether operator A0, whose image in sym E is closed w.r.t. the commutation,
is compatible with Â1 and Â2 in the following sense.

Definition. We say that N � 2 operators Ai : (co)sym E → sym E on E with a common
domain and involutive images, [im Ai, im Ai] ⊆ im Ai for 1 � i � N , are linear compatible
if their linear combinations Aλ = ∑N

i=1 λiAi retain the same property of involutivity for
any λ.

Example 3. It can easily be checked that three Noether operators (4), (6) and (7) for system
(1) are linear compatible.

We note that linear compatible Hamiltonian operators are Poisson compatible and vice
versa, because formula (5) is linear in coefficients of Â.

Theorem 2. The bracket {{, }}Aλ
on the domain of the combination Aλ of linear compatible

operators Ai is

{{, }}∑N
i=1 λiAi

=
N∑

i=1

λi · {{, }}Ai
.

The pairwise linear compatibility implies the collective linear compatibility of A1, . . . , AN .

Proof. This is readily seen by inspecting the coefficients at λ2
i in the quadratic polynomials

in λi that appear in both sides of the equality [Aλ(p), Aλ(q)] = Aλ([p, q]Aλ
), here

p, q ∈ � = dom Ai

/ ⋂N
j=1 ker Aj for any i. �

Corollary 3. Two such operators A,B: (co)sym E → sym E on E with a common domain
and involutive images are linear compatible iff for any p, q ∈ � one has

[B(p), A(q)] + [A(q), B(p)] = A([p, q]B) + B([p, q]A),

which is equivalent to the relation

∂A(p)(B)(q) + ∂B(p)(A)(q) − ∂A(q)(B)(p) − ∂B(q)(A)(p) = A({{p, q}}B) + B({{p, q}}A).
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2. Recursion operators and new Lie brackets

The second step in the construction of the new Lie brackets on sym E is as follows. We note
that the zero-order operator (4) has the inverse ω = A−1

0 on an open dense subset of E . This
yields the local recursion operators Ri := Âi ◦ A0: sym E → sym E . By construction, their
images are closed w.r.t. the commutation [, ]. (We note also that the images of the Hamiltonian
operators Âi for E are generally not closed w.r.t. [, ]Rj

, here 1 � i, j � 2.) Therefore, we
introduce the new Lie algebra structures [, ]Ri

on sym E by (2). Let us summarize the result.

Proposition 4. The recursion operators Ri = Âi ◦ A−1
0 , i = 1, 2, for system (1) are linear

compatible. The new Lie algebra structures [, ]Ri
on sym E span the two-dimensional space

of compatible nontrivial finite deformations of the standard bracket [, ].

The transformation rules for Ri and hence for [, ]Ri
under any reparametrizations of the

variables u, v,w, are obvious. The arising bi-differential brackets {{, }}Ri
, see (3), are obtained

from {{, }}Âi
using the following ‘chain rule’ (cf [12]).

Theorem 5. Consider linear total differential operators A: (co)sym E → sym E and
ω: (co)sym E → (co)sym E such that im ω ⊆ domA. If the images of the operators A

and R = A ◦ ω are closed w.r.t. the commutation of evolutionary vector fields, then the
brackets {{, }}A and {{, }}R are related by the formula

ω({{ξ1, ξ2}}R) = ∂R(ξ1)(ω)(ξ2) − ∂R(ξ2)(ω)(ξ1) + {{ω(ξ1), ω(ξ2)}}A (8)

for any sections ξ1, ξ2 that belong to the domain of ω.

Proof. Denote ψi = ω(ξi) and ϕi = A(ψi) for i = 1, 2. We have

[ϕ1, ϕ2] = (A ◦ ω)
(
∂ϕ1(ξ2) − ∂ϕ2(ξ1) + {{ξ1, ξ2}}A◦ω

)
. (9)

On the other hand, we recall that ψi = ω(ξi) and deduce

[ϕ1, ϕ2] = A
(
∂ϕ1(ψ2) − ∂ϕ2(ψ1) + {{ψ1, ψ2}}A

)
= (A ◦ ω)

(
∂ϕ1(ξ2) − ∂ϕ2(ξ1)

)
+ A

(
∂ϕ1(ω)(ξ2) − ∂ϕ2(ω)(ξ1) + {{ψ1, ψ2}}A

)
. (10)

Now subtract (9) from (10). Comparing (8) and (10) yields the assertion3. �

The bi-differential brackets {{, }}Ri
for the recursions Ri constructed above are completely

determined by the chain rule (8) with ω = A−1
0 :

{{ϕ1, ϕ2}}Ri
= A0

(
∂Ri(ϕ1)(ω)(ϕ2) − ∂Ri(ϕ2)(ω)(ϕ1) + {{ω(ϕ1), ω(ϕ2)}}Âi

)
,

here ϕ1, ϕ2 ∈ sym E are any symmetries of (1). The three components of each bracket
{{, }}Ri

can be calculated explicitly. The coefficients of the skew-symmetric couplings
Dα

x

(
ϕa

1

) · D
β
x

(
ϕb

2

) − D
β
x

(
ϕb

1

) · Dα
x

(
ϕa

2

)
, 0 � α + β � 1, a, b ∈ {u, v,w}, are relatively

large due to the presence of the powers (det A0)
α, 1 � α � 3 in the denominators. Be that as

it may, the two local recursion operators Ri generate the first known examples of compatible
well-defined new Lie brackets on the symmetry algebra of system (1) via the Yang–Baxter
equation (2)4.

Remark 2. The application of the classical r-matrix formalism [13] for a given Lie algebra
g generates Liouville integrable systems using the second Lie algebra structure [, ]r , where r

3 The bracket {{, }}A specifies the equivalence classes modulo ker A in domA and therefore an assumption that the
operator A be invertible is not required for (8).
4 The assumption (2) of the commutation closure corresponds to the degenerate case α = 0 in YB(α).

5
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solves the Yang–Baxter equation YB(α). Since we aim at producing new integrable systems,
it seems worthy to perform the second iteration of this generator by taking g = sym E as the
initial algebra and by finding recursion operators R that specify the new brackets [, ]R on g

and the new Poisson structures on the hierarchy of Hamiltonians for E .

Remark 3. Examples of non-Hamiltonian linear operators with involutive images, and Lie
brackets on their domains, are scattered in the literature (e.g., see [14] for a dispersionless set-
up and a bracket of 1-forms). In particular, the continuous contractions (see [15] and references
therein) by [x, y]ε = R−1(ε)[R(ε)x, R(ε)y], R: ε ∈ (0, 1] → GL(m), of the brackets [, ] in
m-dimensional Lie algebras (km, [, ]) � x, y are the finite-dimensional analogs, in the sense
of remark 1, of the recursion differential operators with involutive images and the induced
brackets (3). However, let us recall that, first, the differential order of such operators can
be sufficiently high for systems with dispersion. Second, the domains and images of such
operators can be formed by (co)symmetries of two different equations. For example, a class of
higher order operators with involutive images is known for the open 2D Toda chains and the
related KdV-type systems; see [6]. Involutive distributions of operator-valued evolutionary
vector fields will be the subject of a subsequent publication; see [16].
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Appendix A. The bracket {{,}}Â for Hamiltonian operators Â

By definition, put �A,ψ(ϕ) := (∂ϕ(A))(ψ) for any generator ϕ of an evolutionary field
∂ϕ, ψ ∈ �, and a total differential operator A. We note that �A,ψ is an operator in total
derivatives w.r.t. its argument ϕ and hence the adjoint �∗

A,ψ is well defined.

Theorem 6 (A criterion of [[A,A]] = 0, [5]). A linear skew-adjoint operator A in total
derivatives is Hamiltonian if and only if the relation

�A,ψ1(A(ψ2)) − �A,ψ2(A(ψ1)) = A
(
�∗

A,ψ2
(ψ1)

)
(A.1)

holds for all ψ1, ψ2 ∈ �. The rhs of (A.1) is skew-symmetric w.r.t. ψ1, ψ2.

The proof is based on a straightforward calculation of the value of the variational Schouten
bracket [[Â, Â]] for a variational Poisson bi-vector Â on three Hamiltonians H1,H2,H3.
Let ψi = δHi/δu ∈ � be the respective variational covectors. The Jacobi identity
[[Â, Â]](H1,H2,H3) = 0 can be expressed as 〈b(ψ1, ψ2), ψ3〉 = 0, where b is a differential
operator w.r.t. each argument and 〈, 〉 is the coupling on �̂×� that takes values in the space of
the Hamiltonians. Since ψ3 ∈ � is arbitrary, we have that b(ψ1, ψ2) = 0 for all ψ1, ψ2 ∈ �.
The calculation shows that b(ψ1, ψ2) is equal to the left-hand side minus the right-hand side
of (A.1), which yields (5).

Proof of theorem 6. The substitution principle [4] implies that it suffices to verify the
Jacobi identity J (ψ1, ψ2, ψ3) = 0 for the elements ψi ∈ im E in the image of the variational

6
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derivative E. Let Hα,Hβ and Hγ be Hamiltonians. The Jacobi identity is

{{Hα,Hβ}A,Hγ }A + {{Hβ,Hγ }A,Hα}A + {{Hγ ,Hα}A,Hβ}A
= −

∑
�

∂A(ψγ )(〈A(ψα), ψβ〉)

= −
∑
�

[〈
∂A(ψγ )(A)(ψα), ψβ

〉
+

〈
A(∂A(ψγ )(ψα)), ψβ

〉
+

〈
A(ψα), ∂A(ψγ )(ψβ)

〉] = 0. (A.2)

Consider the elements of the second sum,〈
A(∂A(ψγ )(ψα)), ψβ

〉 = 〈
ψβ,A(∂A(ψγ )(ψα))

〉 = −〈
A(ψβ), ∂A(ψγ )(ψα)

〉
= −〈

A(ψβ), �ψα
(A(ψγ ))

〉 = −〈
�∗

ψα
(A(ψβ)), A(ψγ )

〉
= (

by �∗
E(Hα) = �E(Hα)

)
= −〈

�ψα
(A(ψβ)), A(ψγ )

〉 = −〈
A(ψγ ), �ψα

A(ψβ)
〉
.

Substituting this back in (A.2), we obtain

0 = −
∑
�

〈
(∂A(ψγ )(A))(ψα), ψβ

〉
+

[∑
�

〈
A(ψγ ), �ψα

A(ψβ)
〉 − ∑

�

〈
A(ψα), �ψβ

A(ψγ )
〉]

= −〈
(∂A(ψγ )(A))(ψα), ψβ

〉 − 〈
(∂A(ψα)(A))(ψβ), ψγ

〉 − 〈
(∂A(ψβ)(A))(ψγ ), ψα

〉
.

Now set α = 3, β = 2, γ = 1; thence we have

0 = −〈
(∂A(ψ1)(A))(ψ3), ψ2

〉 − 〈
(∂A(ψ3)(A))(ψ2), ψ1

〉 − 〈
(∂A(ψ2)(A))(ψ1), ψ3

〉
. (A.3)

Consider the first summand,〈
(∂A(ψ1)(A))(ψ3), ψ2

〉 = 〈
(�A,ψ3(A(ψ1))), ψ2

〉 = 〈
A(ψ1), �

∗
A,ψ3

(ψ2)
〉

= (
by �∗

A,ψ1
(ψ2) = �∗

A∗,ψ2
(ψ1)

)
= 〈

A(ψ1), �
∗
A∗,ψ2

(ψ3)
〉 = 〈

�A∗,ψ2(A(ψ1)), ψ3
〉

= −〈
�A,ψ2(A(ψ1)), ψ3

〉
. (A.4)

Next, the second summand in (A.3) is equal to
〈
(∂A(ψ3)(A))(ψ2), ψ1

〉 =〈
ψ1, �A,ψ2(A(ψ3))

〉 = 〈
�∗

A,ψ2
(ψ1), A(ψ3)

〉 = −〈
A(�∗

A,ψ2
(ψ1), ψ3

〉
. (A.5)

Now consider the third term on the right-hand side of (A.3),〈
(∂A(ψ2)(A))(ψ1), ψ3

〉 = 〈
(�A,ψ1(A(ψ2)), ψ3

〉
. (A.6)

Substituting (A.4) through (A.6) into (A.3), we finally obtain〈
�A,ψ2(A(ψ1)), ψ3

〉
+

〈
A(�∗

A,ψ2
(ψ1), ψ3

〉 − 〈
(�A,ψ1(A(ψ2)), ψ3

〉 = 0,

whence follows (A.1). The proof is complete. �
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